Knowledge-Rich Model Transformations for Speaker Normalization in Speech Recognition

نویسندگان

  • Mats Blomberg
  • Daniel Elenius
چکیده

In this work we extend the test utterance adaptation technique used in vocal tract length normalization to a larger number of speaker characteristic features. We perform partially joint estimation of four features: the VTLN warping factor, the corner position of the piece-wise linear warping function, spectral tilt in voiced segments, and model variance scaling. In experiments on the Swedish PF-Star children database, joint estimation of warping factor and variance scaling lowers the recognition error rate compared to warping factor alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Connectionist Speaker Normalization with Generalized Resource Allocating Networks

Edmondo Trentin Istituto per La Ricerca Scientifica e Tecnologica Povo (Trento), Italy trentin«lirst.it The paper presents a rapid speaker-normalization technique based on neural network spectral mapping. The neural network is used as a front-end of a continuous speech recognition system (speakerdependent, HMM-based) to normalize the input acoustic data from a new speaker. The spectral differen...

متن کامل

Speaker normalization with all-pass transforms

Speaker normalization is a process in which the short-time features of speech from a given speaker are transformed so as to better match some speaker independent model. Vocal tract length normalization (VTLN) is a popular speaker normalization scheme wherein the frequency axis of the short-time spectrum associated with a speaker's speech is rescaled or warped prior to the extraction of cepstral...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008